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Abstract
The study of the density of independent harmonically confined Fermions is
of considerable current interest because of (a) quantum dots and (b) the
experiments of DeMarco and Jin on some alkali metal vapours in magnetic
traps. Our concern here is with relativistic effects, first in harmonically confined
assemblies of electrons as in (a) above and secondly with a stronger type of
Fermion confinement typified again by electrons but now in a quartic rather than
quadratic potential. While our numerical illustrations are for dimensionalities
d = 1 and 3, some analytical results are presented in d dimensions.

PACS numbers: 31.15.Ew, 05.30.Fk

1. Introduction

Harmonic confinement has been of considerable interest because of (a) quantum dots and
following experiments on Bose–Einstein condensation [1–3]; (b) the study of DeMarco and
Jin [4] (see also [5–7]) on magnetically trapped Fermion vapours. Since magnetic traps are
well represented by harmonic confinement, and different geometries can span two and three
dimensions, the experiments in [4–7] above motivated Minguzzi et al [8, 9] to construct
differential equations for the Fermion density ρ(r) for isotropic harmonic confinement in two
and three dimensions. Their studies generalized the early work of Lawes and March [10] on
one-dimensional harmonic confinement. These three studies in [8–10] can be subsumed into
the d-dimensional differential equation [11]

h̄2

8m0

∂[∇2ρ(r)]

∂r
+

[(
M +

d + 1

2

)
h̄ω − m0ω

2r2

2

]
∂ρ(r)

∂r
+ dm0ω

2rρ(r)/2 = 0 (1)

with ω the characteristic frequency and (M + 1) the number of closed shells. For d = 3,

Howard and March [12] solved equation (1) in a finite series form, and we depict their result for
ρ(r) for 13 closed shells (or N = 455 one-particle levels with single occupancy) in figure 1.
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Figure 1. Fermion densities for three-dimensional harmonic confinement. Exact density shown
from solution of equation (1) for 13 closed shells (N = 455 is number of particles with single
occupancy of levels). Choice of variables is m0 = 1 (electron rest mass in atomic units; i.e., for
quantum dot example in three dimensions), c = 137 and h̄ω = 1. The non-relativistic Thomas–
Fermi (TF) density is also plotted. For this value of N, the relativistic TF density of equations (5)
and (6) is graphically indistinguishable from the non-relativistic TF results.

For comparison with this result, we show the Thomas–Fermi semiclassical approximation
given by

ρTF(r) = 4π

3h3
(2m0)

3/2[µ − V (r)]3/2 (2)

where m0 denotes the Fermion (rest) mass, and V (r) = kr2/2 with k the force constant
characterizing the harmonic confinement. The chemical potential µ is evidently to be
determined from the normalization requirement

N =
∫ rc

0
ρTF(r)4πr2 dr = 4π

3h3
(2m0)

3/2
∫ rc

0
[µ − V (r)]3/24πr2 dr (3)

where the classical radius rc is determined from µ = kr2
c

/
2. This yields

N = 1

6

( µ

h̄ω

)3
. (4)

The focus of this paper is to study relativistic effects when many independent Fermions
are confined in d dimensions.

2. Relativistic Thomas–Fermi theory

It seems natural enough then to begin with relativistic Thomas–Fermi theory, going back to
Vallarta and Rosen [13]. Their treatment gives the relativistic (R) chemical potential as

µR =
√

c2p2
F (r) + m0c4 − m0c

2 + V (r) (5)
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Figure 2. Chemical potentials for harmonic confinement in three dimensions as a function of
Fermion number N (m0 = 1, c = 137 and h̄ω = 1 as in figure 1). The upper curve is non-
relativistic TF result. The lower curve is from relativistic TF theory. The asymptotic behaviour for
N large is given explicitly for both non-relativistic and relativistic cases in equations (4) and (10).

where again the Fermi momentum pF (r) satisfies the phase-space relation, for singly occupied
levels,

ρTF
R (r) = 4π

3h3
p3

F (r) (6)

or in d dimensions [14]

ρTF
R = Cdp

d
F : Cd = πd/2

/[
hd�

(
d

2
+ 1

)]
. (7)

Again, with V (r) = kr2/2 inserted in equation (5) one finds with d = 3 the relativistic
chemical potential µR, in units of h̄ω and for m0 = 1, as

N = − 32

945

(−4µ2
Rc6 − 41µ3

Rc4 − 24µ4
Rc2 − 4µ5

R + 60µRc8 + 64c10)

πc3
√

4c2 + 2µ
E

( √
µR√

2c2 + µR

)

− 32

945

(17µ3
Rc4 + 4µ4

Rc2 − 44µRc8 + 12µ2
Rc6 − 64c10)

πc3
√

4c2 + 2µR

K

( √
µR√

2c2 + µR

)
(8)

where K and E are the complete elliptic integrals of the first and second kinds, respectively. If
we now plot ρR(r) for N = 455, with h̄ = m0 = k = 1 plus c = 137 in atomic units, we can
hardly distinguish ρTF

R (r) from the non-relativistic TF curve.
Therefore to understand how relativity becomes important as N increases, we have plotted

in figure 2 µR from equation (8) as a function of N . For sufficiently large N, figure 2 shows
how non-relativistic (µ) and relativistic (µR) chemical potentials begin to diverge. The range
of Fermion number N in the plots is very large, involving N ∼ 109. However, for K40 in
magnetic traps a million atoms are involved in the experiments (see for example [15]). But
our plot of µR is for electrons, i.e., m0 = 1 in atomic units; it is for electrons that relativistic
effects may eventually prove significant in harmonic confinement in three dimensions. Figure 2
shows clearly that relativity becomes significant for large N . Taking the asymptotic limit of
equation (8) for large µR ≡ µ3, we find for d = 3 that

N = 64

945

√
2

πc3
µ

9/2
3 +

32

105

√
2

πc
µ

7/2
3 +

4c

15

√
2

π
µ

5/2
3 + O

(
µ

3/2
3

)
. (9)
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Figure 3. Electron densities for harmonic confinement in one dimension for 10 000 Fermions with
single occupancy (m0 = 1, c = 137, h̄ω = 1). Now there is a quite clearcut change in the electron
density caused by relativistic effects. One can expect, in this example, that relativistic effects will
be considerably larger than any changes in the non-relativistic TF density resulting from the exact
solution of the analogue of equation (1) in one dimension, for N = 10 000.

To lowest order, we then have for d = 3

µ3 = (945π)2/9

4
25/9c2/3N2/9 (10)

and performing an equivalent expansion for d = 1 yields

µ1 = (3π)2/3

4
21/3c2/3N2/3 N → ∞. (11)

In general d dimensions, we find µd ∝ c2/3N2/3d from the phase space equation (7).
The above considerations as to when relativistic effects become significant for m0 = 1

have prompted us to consider next 10 000 singly occupied levels in one dimension. Then, from
the TF approximation, both relativistic and non-relativistic densities are plotted in figure 3
for h̄ω = 1 and c = 137. Relativistic effects are clearly in evidence, the main qualitative
features being that the Fermion density at the origin is increased noticeably, while the
classically forbidden region, characteristic of semiclassical TF theories, is somewhat extended
by inclusion of relativity. Plainly, for the parameters used in constructing figure 3 (especially
m0 = 1 ) there is little point in transcending the non-relativistic TF density using equation (1)
for d = 1 and N = 10 000, since relativistic effects will mask such non-relativistic corrections
(except, of course, in the classically forbidden regions).

3. Difference equation approach

However, it will surely be important, for the future, to improve the relativistic TF theory for
harmonic confinement by accounting for tunnelling tails in the region referred to above where
the semiclassical density is identically zero. Therefore to obtain an estimate of the relativistic
density which we believe should transcend the Vallarta–Rosen TF approximation we shall
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proceed heuristically by replacing the differential equation (1) by a difference equation which
reads

(ρ(r + 2ε) − ρ(r − 2ε) − 2ρ(r + ε) + 2ρ(r − ε))

16ε3

+

[
M +

(d + 1)

2
− r2

2
− (d − 1)

8r2

]
(ρ(r + ε) − ρ(r − ε))

2ε

+ dr
ρ(r)

2
+

(d − 1)

r

(ρ(r + ε) + ρ(r − ε) − 2ρ(r))

8ε2
= 0. (12)

To our knowledge, such an approach for density functional theory is novel, though for
individual wavefunctions Wall [16] already wrote a difference equation. Following his
proposal, we note that the length scale of the interval ε in equation (12) is the Compton
wavelength h/m0c. Obviously, as ε → 0 or c → ∞, i.e. the non-relativistic limit, the
heuristic proposal made here, which is embodied in the difference equation (12), reduces
precisely to equation (1), as any correct density functional theory for an arbitrary number of
closed shells must do.

We shall discuss the analytic solution of equation (12) in more detail elsewhere. Suffice
it to say that we can write a solution for the relativistic Fermion density ρR(r) in the form

ρR(r + nε) = bn(r, ε)ρ(r) (13)

with ρ(r) the corresponding non-relativistic density, n being an integer. Then b satisfies a
quartic equation which we have solved exactly for three-dimensional harmonic confinement.
Taking c = 137, the density is graphically indistinguishable from the exact non-relativistic
density for N = 455 in figure 1 for any reasonable choice of ε.

Therefore, it seemed natural to return to the one-dimensional example in figure 3, with
N = 10 000, where, with m0 = 1, h̄ω = 1, c = 137 we know that relativistic effects are
significant. Though the choice of ε, proportional to the Compton wavelength h/m0c, is
somewhat arbitrary, and will need beyond the present heuristic arguments a first-principles
theory for, say, harmonic confinement, to ε = ε(N) apart from its scale h/m0c, equation (11)
for the relativistic chemical potential for large N compared to the non-relativistic counterpart
µ1 ∝ N suggests that c is linked ‘in scaling’ with N1/2, to convert equation (11) to µ ∝ N.

Thus, with admittedly some arbitrariness, we have solved the quartic equation for the one-
dimensional analogue of b in equation (13) exactly for ε = 44 a.u., and the result is shown in
figure 4(a); b(x) obtained approximately for n = 1 and this value of ε from equation (13) by
inserting TF and Vallarta–Rosen densities is shown for comparison. We stress that we have
made no attempt to find the ‘best’ ε, as its determination is outside the scope of our heuristic
approach based on a difference equation exemplified by equation (12). However, to show
what relativistic Fermion density the choice ε = 44 implies, we have used the exact b(x) in
figure 3 for N = 10 000, together with the non-relativistic TF density of figure 3 to construct
figure 4(b). The result seems sufficiently encouraging to justify a fuller first-principles study
of the role of difference equations in relativistic density functional theory.

Before concluding, we wish to mention a further example we have studied, in which
many Fermions are more strongly confined than by the harmonic potential discussed at length
above. Briefly, we shall now summarize our findings for such a stronger confining potential

V (x) = ax4. (14)

Then we can generalize the large-N scaling results above in one dimension to

µ1 = const × N4/3 : N → ∞ (15)
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Figure 4. Illustrative use of the relativistic difference equation analogous to equation (12) in three
dimensions for N = 10 000 Fermions as in figure 3. The quantity b(x) is shown for two cases
in panel (a): (i) from the TF densities, as b(x) = ρR(x + ε)/ρ(x), i.e. the ratio of the ‘shifted’
relativistic TF density to its non-relativistic counterpart and (ii) from the difference equation method
proposed here. The choice of ε = 44 may eventually need refinement as we expect the relation
of ε to the Compton wavelength to involve the number of Fermions N. Our TF estimates given in
the body of the text lead us to conjecture that, for large N, ε ∼ N1/2λCompton, but to refine that is
a matter for first-principles theory, rather than for the heuristic method proposed here. Panel (b)
shows the ‘shifted’ relativistic density ρR(x + ε) with ε = 44, constructed, but now approximately
as ρR(x + ε) = b(x, ε)ρTF(x), where b(x, ε) is the exact solution of the difference equation (12)
for d = 1, but the non-relativistic density is now approximated by its TF counterpart. This is an
excellent approximation for N = 10 000 considered here. We stress that we have not attempted to
vary ε systematically, for reasons discussed in the caption to (a).

and the relativistic Thomas–Fermi counterpart to

µR1 = const × c4/5N4/5 : N → ∞. (16)

The corresponding results in three dimensions are

µ3 = const × N8/21 : N → ∞ (17)

and

µR3 = const × c4/5N4/15 : N → ∞. (18)
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To date, the differential equation for the non-relativistic density corresponding to equation (1),
in the case of the potential V = ax4 has not been obtained.

4. Summary and future directions

In summary, we have set out how one might make estimates of relativistic effects when many
independent Fermions are subjected to confinement in d dimensions. As numerical examples,
we have considered, for d = 1 and 3, two types of confinement: (a) harmonic as for quantum
dots and very briefly (b) quartic confinement by the potential of equation (14). Finally,
we have made a heuristic proposal whereby such a non-relativistic differential equation is
to be replaced by a difference equation (see equation (12) for three-dimensional harmonic
confinement). This aspect, we believe, makes a start on a relativistic density functional theory
in terms of difference equations, but much further work is needed on the first-principles
foundations of such a theory. Already, however, for wavefunction methods, but not to our
knowledge density functional theory, in the studies of Wall [16], Ruijsenaars [17] and Ord
[18], difference equations are in evidence, which encourages us as to the merit of the present
heuristic approach to relativistic density functional theory. The heuristic treatment, while in
its early stages of development of course as a density functional theory, has the considerable
merit of avoiding a classically forbidden region, which is a consequence of semiclassical TF
theories.
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